package gago import ( "fmt" "math" ) // A Metric returns the distance between two genomes. type Metric func(a, b Individual) float64 // A DistanceMemoizer computes and stores Metric calculations. type DistanceMemoizer struct { Metric Metric Distances map[string]map[string]float64 nCalculations int // Total number of calls to Metric for testing purposes } // newDistanceMemoizer initializes a DistanceMemoizer. func newDistanceMemoizer(metric Metric) DistanceMemoizer { return DistanceMemoizer{ Metric: metric, Distances: make(map[string]map[string]float64), } } // GetDistance returns the distance between two Individuals based on the // DistanceMemoizer's Metric field. If the two individuals share the same ID // then GetDistance returns 0. DistanceMemoizer stores the calculated distances // so that if GetDistance is called twice with the two same Individuals then // the second call will return the stored distance instead of recomputing it. func (dm *DistanceMemoizer) GetDistance(a, b Individual) float64 { // Check if the two individuals are the same before proceding if a.ID == b.ID { return 0 } // Create maps if the genomes have never been encountered if _, ok := dm.Distances[a.ID]; !ok { dm.Distances[a.ID] = make(map[string]float64) } else { // Check if the distance between the two genomes has been calculated if dist, ok := dm.Distances[a.ID][b.ID]; ok { return dist } } if _, ok := dm.Distances[b.ID]; !ok { dm.Distances[b.ID] = make(map[string]float64) } // Calculate the distance between the genomes and memoize it var dist = dm.Metric(a, b) dm.Distances[a.ID][b.ID] = dist dm.Distances[b.ID][a.ID] = dist dm.nCalculations++ return dist } // calcAvgDistances returns a map that associates the ID of each provided // Individual with the average distance the Individual has with the rest of the // Individuals. func calcAvgDistances(indis Individuals, dm DistanceMemoizer) map[string]float64 { var avgDistances = make(map[string]float64) for _, a := range indis { for _, b := range indis { avgDistances[a.ID] += dm.GetDistance(a, b) } avgDistances[a.ID] /= float64(len(indis) - 1) } return avgDistances } func rebalanceClusters(clusters []Individuals, dm DistanceMemoizer, minPerCluster int) error { // Calculate the number of missing Individuals per cluster for each cluster // to reach at least minPerCluster Individuals. var missing = make([]int, len(clusters)) for i, cluster := range clusters { // Check that the cluster has at least one Individual if len(cluster) == 0 { return fmt.Errorf("Cluster %d has 0 individuals", i) } // Calculate the number of missing Individual in the cluster to reach minPerCluster missing[i] = minPerCluster - len(cluster) } // Check if there are enough Individuals to rebalance the clusters. if sumInts(missing) >= 0 { return fmt.Errorf("Missing %d individuals to be able to rebalance the clusters", sumInts(missing)) } // Loop through the clusters that are missing Individuals for i, cluster := range clusters { // Check if the cluster is missing Individuals if missing[i] <= 0 { continue } // Assign new Individuals to the cluster while it is missing some for missing[i] > 0 { // Determine the medoid cluster.SortByDistanceToMedoid(dm) var medoid = cluster[0] // Go through the Individuals of the other clusters and find the one // closest to the computed medoid var ( cci int // Closest cluster index cii int // Closest Individual index minDist = math.Inf(1) ) for j := range clusters { // Check that the cluster has Individuals to spare if i == j || missing[j] >= 0 { continue } // Find the closest Individual to the medoid inside the cluster for k, indi := range clusters[j] { var dist = dm.GetDistance(indi, medoid) if dist < minDist { cci = j cii = k minDist = dist } } } // Add the closest Individual to the cluster clusters[i] = append(clusters[i], clusters[cci][cii]) // Remove the closest Individual from the cluster it belonged to clusters[cci] = append(clusters[cci][:cii], clusters[cci][cii+1:]...) missing[i]-- } } return nil }