210 lines
6.1 KiB
Go
210 lines
6.1 KiB
Go
|
package gago
|
||
|
|
||
|
import (
|
||
|
"errors"
|
||
|
"log"
|
||
|
"math/rand"
|
||
|
"sync"
|
||
|
"time"
|
||
|
|
||
|
"golang.org/x/sync/errgroup"
|
||
|
)
|
||
|
|
||
|
// A GA contains population which themselves contain individuals.
|
||
|
type GA struct {
|
||
|
// Fields that are provided by the user
|
||
|
GenomeFactory GenomeFactory `json:"-"`
|
||
|
NPops int `json:"-"` // Number of Populations
|
||
|
PopSize int `json:"-"` // Number of Individuls per Population
|
||
|
Model Model `json:"-"`
|
||
|
Migrator Migrator `json:"-"`
|
||
|
MigFrequency int `json:"-"` // Frequency at which migrations occur
|
||
|
Speciator Speciator `json:"-"`
|
||
|
Logger *log.Logger `json:"-"`
|
||
|
Callback func(ga *GA) `json:"-"`
|
||
|
|
||
|
// Fields that are generated at runtime
|
||
|
Populations Populations `json:"pops"`
|
||
|
Best Individual `json:"best"` // Overall best individual
|
||
|
Age time.Duration `json:"duration"`
|
||
|
Generations int `json:"generations"`
|
||
|
rng *rand.Rand
|
||
|
}
|
||
|
|
||
|
// Validate the parameters of a GA to ensure it will run correctly; some
|
||
|
// settings or combination of settings may be incoherent during runtime.
|
||
|
func (ga GA) Validate() error {
|
||
|
// Check the GenomeFactory presence
|
||
|
if ga.GenomeFactory == nil {
|
||
|
return errors.New("GenomeFactory cannot be nil")
|
||
|
}
|
||
|
// Check the number of populations is higher than 0
|
||
|
if ga.NPops < 1 {
|
||
|
return errors.New("NPops should be higher than 0")
|
||
|
}
|
||
|
// Check the number of individuals per population is higher than 0
|
||
|
if ga.PopSize < 1 {
|
||
|
return errors.New("PopSize should be higher than 0")
|
||
|
}
|
||
|
// Check the model presence
|
||
|
if ga.Model == nil {
|
||
|
return errors.New("Model cannot be nil")
|
||
|
}
|
||
|
// Check the model is valid
|
||
|
var modelErr = ga.Model.Validate()
|
||
|
if modelErr != nil {
|
||
|
return modelErr
|
||
|
}
|
||
|
// Check the migration frequency if a Migrator has been provided
|
||
|
if ga.Migrator != nil && ga.MigFrequency < 1 {
|
||
|
return errors.New("MigFrequency should be strictly higher than 0")
|
||
|
}
|
||
|
// Check the speciator is valid if it has been provided
|
||
|
if ga.Speciator != nil {
|
||
|
if specErr := ga.Speciator.Validate(); specErr != nil {
|
||
|
return specErr
|
||
|
}
|
||
|
}
|
||
|
// No error
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Find the best individual in each population and then compare the best overall
|
||
|
// individual to the current best individual. This method supposes that the
|
||
|
// populations have been preemptively ascendingly sorted by fitness so that
|
||
|
// checking the first individual of each population is sufficient.
|
||
|
func (ga *GA) findBest() {
|
||
|
for _, pop := range ga.Populations {
|
||
|
var best = pop.Individuals[0]
|
||
|
if best.Fitness < ga.Best.Fitness {
|
||
|
ga.Best = best.Clone(pop.rng)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Initialize each population in the GA and assign an initial fitness to each
|
||
|
// individual in each population. Running Initialize after running Enhance will
|
||
|
// reset the GA entirely.
|
||
|
func (ga *GA) Initialize() {
|
||
|
ga.Populations = make([]Population, ga.NPops)
|
||
|
ga.rng = newRandomNumberGenerator()
|
||
|
var wg sync.WaitGroup
|
||
|
for i := range ga.Populations {
|
||
|
wg.Add(1)
|
||
|
go func(j int) {
|
||
|
defer wg.Done()
|
||
|
// Generate a population
|
||
|
ga.Populations[j] = newPopulation(
|
||
|
ga.PopSize,
|
||
|
ga.GenomeFactory,
|
||
|
randString(3, ga.rng),
|
||
|
)
|
||
|
// Evaluate its individuals
|
||
|
ga.Populations[j].Individuals.Evaluate()
|
||
|
// Sort its individuals
|
||
|
ga.Populations[j].Individuals.SortByFitness()
|
||
|
// Log current statistics if a logger has been provided
|
||
|
if ga.Logger != nil {
|
||
|
ga.Populations[j].Log(ga.Logger)
|
||
|
}
|
||
|
}(i)
|
||
|
}
|
||
|
wg.Wait()
|
||
|
// The initial best individual is initialized randomly
|
||
|
var rng = newRandomNumberGenerator()
|
||
|
ga.Best = NewIndividual(ga.GenomeFactory(rng), rng)
|
||
|
ga.findBest()
|
||
|
// Execute the callback if it has been set
|
||
|
if ga.Callback != nil {
|
||
|
ga.Callback(ga)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Enhance each population in the GA. The population level operations are done
|
||
|
// in parallel with a wait group. After all the population operations have been
|
||
|
// run, the GA level operations are run.
|
||
|
func (ga *GA) Enhance() error {
|
||
|
var start = time.Now()
|
||
|
ga.Generations++
|
||
|
// Migrate the individuals between the populations if there are at least 2
|
||
|
// Populations and that there is a migrator and that the migration frequency
|
||
|
// divides the generation count
|
||
|
if len(ga.Populations) > 1 && ga.Migrator != nil && ga.Generations%ga.MigFrequency == 0 {
|
||
|
ga.Migrator.Apply(ga.Populations, ga.rng)
|
||
|
}
|
||
|
var g errgroup.Group
|
||
|
for i := range ga.Populations {
|
||
|
i := i // https://golang.org/doc/faq#closures_and_goroutines
|
||
|
g.Go(func() error {
|
||
|
var err error
|
||
|
// Apply speciation if a positive number of species has been specified
|
||
|
if ga.Speciator != nil {
|
||
|
err = ga.Populations[i].speciateEvolveMerge(ga.Speciator, ga.Model)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
} else {
|
||
|
// Else apply the evolution model to the entire population
|
||
|
err = ga.Model.Apply(&ga.Populations[i])
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
}
|
||
|
// Evaluate and sort
|
||
|
ga.Populations[i].Individuals.Evaluate()
|
||
|
ga.Populations[i].Individuals.SortByFitness()
|
||
|
ga.Populations[i].Age += time.Since(start)
|
||
|
ga.Populations[i].Generations++
|
||
|
// Log current statistics if a logger has been provided
|
||
|
if ga.Logger != nil {
|
||
|
ga.Populations[i].Log(ga.Logger)
|
||
|
}
|
||
|
return err
|
||
|
})
|
||
|
}
|
||
|
if err := g.Wait(); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
// Check if there is an individual that is better than the current one
|
||
|
ga.findBest()
|
||
|
ga.Age += time.Since(start)
|
||
|
// Execute the callback if it has been set
|
||
|
if ga.Callback != nil {
|
||
|
ga.Callback(ga)
|
||
|
}
|
||
|
// No error
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (pop *Population) speciateEvolveMerge(spec Speciator, model Model) error {
|
||
|
var (
|
||
|
species, err = spec.Apply(pop.Individuals, pop.rng)
|
||
|
pops = make([]Population, len(species))
|
||
|
)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
// Create a subpopulation from each specie so that the evolution Model can
|
||
|
// be applied to it.
|
||
|
for i, specie := range species {
|
||
|
pops[i] = Population{
|
||
|
Individuals: specie,
|
||
|
Age: pop.Age,
|
||
|
Generations: pop.Generations,
|
||
|
ID: randString(len(pop.ID), pop.rng),
|
||
|
rng: pop.rng,
|
||
|
}
|
||
|
err = model.Apply(&pops[i])
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
}
|
||
|
// Merge each species back into the original population
|
||
|
var i int
|
||
|
for _, subpop := range pops {
|
||
|
copy(pop.Individuals[i:i+len(subpop.Individuals)], subpop.Individuals)
|
||
|
i += len(subpop.Individuals)
|
||
|
}
|
||
|
return nil
|
||
|
}
|